分式复合函数y=(1+3x.1-4x)^2的图像示意图

本经验通过函数的定义域、单调性、凸凹性、极限等性质,用导数工具介绍分数函数y=[(1+3x)/(1-4x)]^2的图像的主要步骤。

主要方法与步骤

    1

    分式函数[(1+3x)/(1-4x)]^2分母不为0,结合分式函数的性质,由分母不为0,求解函数[(1+3x)/(1-4x)]^2的定义域。

    分式复合函数y=(1+3x.1-4x)^2的图像示意图

    2

    函数的单调性也叫函数的增减性。当函数 f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。

    分式复合函数y=(1+3x.1-4x)^2的图像示意图

    3

    根据函数[(1+3x)/(1-4x)]^2求导法则,计算函数的二阶导数,判断函数[(1+3x)/(1-4x)]^2的凸凹性并得到凸凹区间。

    分式复合函数y=(1+3x.1-4x)^2的图像示意图

    4

    二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y'=f'(x)仍然是x的函数,则y'=f'(x)的导数叫作函数y=f(x)的二阶导数。

    5

    根据题意,解析函数[(1+3x)/(1-4x)]^2在无穷大处的极限。

    分式复合函数y=(1+3x.1-4x)^2的图像示意图

    6

    函数[(1+3x)/(1-4x)]^2的五点图,函数[(1+3x)/(1-4x)]^2上部分点,解析如下:

    分式复合函数y=(1+3x.1-4x)^2的图像示意图

    7

    根据以上函数的定义域、凸凹性、极限、凸凹等性质,通过五点图法,解析函数[(1+3x)/(1-4x)]^2的示意图如下:

    分式复合函数y=(1+3x.1-4x)^2的图像示意图END

温馨提示:经验内容仅供参考,如果您需解决具体问题(尤其法律、医学等领域),建议您详细咨询相关领域专业人士。
免责声明:本文转载来之互联网,不代表本网站的观点和立场。如果你觉得好欢迎分享此网址给你的朋友。
转载请注明出处:https://www.baikejingyan.net/afaa9VwdsBA5RC1cC.html

打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2024年04月13日
下一篇 2024年04月13日
single-end

热门经验

single-end

相关经验

联系我们

在线咨询: QQ交谈

邮件:baikejingyan@gmail.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信