本文介绍函数y=(x-32)(x-7)(x-3)的定义域、单调性、凸凹性、极限等性质,并用导数知识求解函数的单调区间和凸凹区间,简要画出函数图像的示意图。
方法/步骤
1
函数是三个一次函数的乘积,且每个一次函数的定义域为全体实数,则乘积函数自变量x可取全体实数,所以函数的定义域为:(-∞,+∞)。
2
函数的定义域是使函数有意义的自变量的取值范围。换句话说,定义域是函数中x的允许值的集合。
3
函数的单调性是函数的重要性质,反映了随着自变量的增加函数值的变化趋势,它是研究函数性质的有力工具,在解决比较大小、解决函数图像、值域、最值、不等式问题都有很重要的作用。
4
在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中只能在定义域内,通过讨论导数的符号来判断函数的单调区间。
5
如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图像上的任意两点连出的一条线段,这两点之间的函数图像都在该线段的下方,反之在该线段的上方。
6
计算本题函数在正无穷和负无穷远处,以及零点处的极限值。
7
数列极限标准定义:对数列{xn},若存在常数a,对于任意ε>0,总存在正整数N,使得当n>N时,|xn-a|<ε成立,那么称a是数列{xn}的极限。
8
解析函数五点图,即根据函数的单调性、凸凹性关键点,并结合函数的定义域,则函数部分点解析表如下:
9
综合以上函数的单调性、凸凹性、极限等相关性质,结合函数的定义域,即可简要画出函数的示意图。
END温馨提示:经验内容仅供参考,如果您需解决具体问题(尤其法律、医学等领域),建议您详细咨询相关领域专业人士。免责声明:本文转载来之互联网,不代表本网站的观点和立场。如果你觉得好欢迎分享此网址给你的朋友。转载请注明出处:https://www.baikejingyan.net/af78bVwdsBA5WClII.html