用导数知识画函数y=log2(3x^2+6)的图像

本经验通过函数的定义域、单调性、凸凹性、奇偶性等,介绍函数y=log2(3x^2+6)的图像的主要步骤。

主要方法与步骤

    1

    结合对数函数的性质,真数大于0,求解函数y=log2(3x^2+6)的定义域。

    用导数知识画函数y=log2(3x^2+6)的图像

    2

    形如y=f(x),则x是自变量,它代表着函数图像上每一点的横坐标,自变量的取值范围就是函数的定义域。f是对应法则的代表,它可以由f(x)的解析式决定。

    3

    首先计算出函数的一阶导数,进一步求解函数的驻点,即可判断函数y=log2(3x^2+6)的单调性。

    用导数知识画函数y=log2(3x^2+6)的图像

    4

    函数的单调性是函数的重要性质,反映了随着自变量的增加函数值的变化趋势,它是研究函数性质的有力工具。

    5

    计算函数的二阶导数,求出函数的拐点,判断函数y=log2(3x^2+6)的凸凹性。

    用导数知识画函数y=log2(3x^2+6)的图像

    6

    二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y'=f'(x)仍然是x的函数,则y'=f'(x)的导数叫作函数y=f(x)的二阶导数。

    7

    判断函数y=log2(3x^2+6)的奇偶性,本函数为偶函数,确定其对称性为关于y轴对称。

    用导数知识画函数y=log2(3x^2+6)的图像

    8

    函数五点图,根据函数的定义域,函数y=log2(3x^2+6)部分点解析表如下。

    用导数知识画函数y=log2(3x^2+6)的图像

    9

    由函数的定义域,结合函数的单调性、凸凹性、偶函数等性质,解析函数y=log2(3x^2+6)的示意图如下:

    用导数知识画函数y=log2(3x^2+6)的图像END

温馨提示:经验内容仅供参考,如果您需解决具体问题(尤其法律、医学等领域),建议您详细咨询相关领域专业人士。
免责声明:本文转载来之互联网,不代表本网站的观点和立场。如果你觉得好欢迎分享此网址给你的朋友。
转载请注明出处:https://www.baikejingyan.net/af19dVwdsBA5XB1IB.html

打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2024年08月19日
下一篇 2024年08月21日
single-end

热门经验

single-end

相关经验

联系我们

在线咨询: QQ交谈

邮件:baikejingyan@gmail.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信