二次与对数函数的复合函数y=x^2(4lnx-5x)的图像

本经验通过函数的定义域、单调性、凸凹性等,介绍函数y=x^2(4lnx-5x)的图像的主要步骤。

主要方法与步骤

    1

    函数的定义域,根据函数特征,有对数函数lnx,即要求真数部分为正数,所以y=x^2(4lnx-5x)定义域要求x>0。

    二次与对数函数的复合函数y=x^2(4lnx-5x)的图像

    2

    函数的单调性,通过函数y=x^2(4lnx-5x)的一阶导数,求出函数y=x^2(4lnx-5x)的单调区间。

    二次与对数函数的复合函数y=x^2(4lnx-5x)的图像

    3

    令导数为0,求出函数y=x^2(4lnx-5x)的驻点,判断导数的符号,进而求出函数y=x^2(4lnx-5x)的单调区间。

    二次与对数函数的复合函数y=x^2(4lnx-5x)的图像

    4

    函数y=x^2(4lnx-5x)的凸凹性,通过函数的二阶导数,求出函数的拐点,根据拐点判断二次导数的符号,解析函数y=x^2(4lnx-5x)的凸凹区间。

    二次与对数函数的复合函数y=x^2(4lnx-5x)的图像二次与对数函数的复合函数y=x^2(4lnx-5x)的图像

    5

    函数y=x^2(4lnx-5x)的凸凹性,通过函数y=x^2(4lnx-5x)的二阶导数,求出函数的拐点,根据拐点判断二次导数的符号,解析函数y=x^2(4lnx-5x)的凸凹区间。

    6

    函数y=x^2(4lnx-5x)在端点处的极限:

    二次与对数函数的复合函数y=x^2(4lnx-5x)的图像

    7

    根据题意,解析函数y=x^2(4lnx-5x)在无穷大处的极限。

    二次与对数函数的复合函数y=x^2(4lnx-5x)的图像

    8

    综合以上函数的定义域、单调性、凸凹性和极限等性质,函数y=x^2(4lnx-5x)的示意图如下。

    二次与对数函数的复合函数y=x^2(4lnx-5x)的图像END

注意事项

    导数是判断函数单调性和凸凹性的重要工具

温馨提示:经验内容仅供参考,如果您需解决具体问题(尤其法律、医学等领域),建议您详细咨询相关领域专业人士。
免责声明:本文转载来之互联网,不代表本网站的观点和立场。如果你觉得好欢迎分享此网址给你的朋友。
转载请注明出处:https://www.baikejingyan.net/af10aVwdsBAdVAFE.html

打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023年08月07日
下一篇 2023年08月08日
single-end

热门经验

single-end

相关经验

联系我们

在线咨询: QQ交谈

邮件:baikejingyan@gmail.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信