本经验通过函数的定义域、单调性、凸凹性、极限等性质,介绍函数用导数工具画函数y=2^(4x^2+3x+2)图像的主要步骤。
方法/步骤
1
函数的定义域,函数基本类型为指数函数,由函数特征知函数的自变量x可以取全体实数,即定义域为:(-∞,+∞)。
2
函数单调性解析,主要思路是首先计算函数的一阶导数,得到函数的驻点,再判断函数的单调性,进而求解函数的单调凸凹区间。
3
如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。
4
计算函数的二阶导数,根据二阶导数符号,即可判断函数的凸凹性。
5
如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凸函数的充要条件是f''(x)<=0。
6
函数上无穷远处的极限。
7
函数上五点示意图表。
8
根据以上函数的定义、单调、凸凹等性质,结合函数的单调和凸凹区间及极限等性质,函数y的示意图可以简要画出。
END温馨提示:经验内容仅供参考,如果您需解决具体问题(尤其法律、医学等领域),建议您详细咨询相关领域专业人士。免责声明:本文转载来之互联网,不代表本网站的观点和立场。如果你觉得好欢迎分享此网址给你的朋友。转载请注明出处:https://www.baikejingyan.net/afeb2VwdsBA5XBV8J.html