本经验通过函数的定义域、单调性、凸凹性、极限、奇偶等性质,介绍函数用导数工具画函数y=8x/(3+x^2)的图像的主要步骤。
主要方法与步骤
1
函数分母不为0,即可解析函数自变量可以取全体实数,所以函数y的定义域为:(-∞,+∞)。
2
定义域是指该函数的有效范围,函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合。
3
如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。
4
计算函数的二阶导数,进一步解析函数的拐点,从而解析函数的凸凹性和凸凹区间。
5
几何的直观解释:如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图像上的任意两点连出的一条线段,这两点之间的函数图像都在该线段的下方,反之在该线段的上方。
6
根据函数特征,函数分母为偶函数,分子为奇函数,即可解析函数y为奇函数。
7
在数学中,一个函数f(x) 被称为奇函数,当且仅当对于任意实数x,都有f(-x)=-f(x)成立;而一个函数f(x)f(x)被称为偶函数,当且仅当对于任意实数 x,都有f(-x)=f(x) 成立。
判断一个函数的奇偶性可以通过代入-x并进行比较的方法进行。具体来说:
对于奇函数f(x),我们有f(-x)=-f(x),因此f(-x)+f(x)=0。
对于偶函数f(x),我们有f(-x)=f(x),因此f(-x)-f(x)=0。
8
函数五点图,列表,函数部分点解析表如下:
9
根据函数的定义域、值域、单调性、凸凹性、奇偶性以及极限等性质,以及函数的单调区间、凸凹区间,可画出函数的示意图。
END温馨提示:经验内容仅供参考,如果您需解决具体问题(尤其法律、医学等领域),建议您详细咨询相关领域专业人士。免责声明:本文转载来之互联网,不代表本网站的观点和立场。如果你觉得好欢迎分享此网址给你的朋友。转载请注明出处:https://www.baikejingyan.net/af0c5VwdsBAFXAVQI.html